AD A 104105 ### LEVELO (1) DYNAMIC DEFORMATION AND FRACTURE OF PLAIN AND FILLED ELASTOMERS September 1981 By: Y. M./Gupta W. J./Murri Prepared for: OFFICE OF NAVAL RESEARCH Power Program Arlington, VA 22217 Attention: Dr. R. S. Miller (Code 473) ONR Contract N00014-78-C-0549 SRI Project PYU 7802 12 13 DISTRIBUTION STATEMENT A Approved for public release; Distribution Unlimited 333 Ravenswood Ave. • Mento Park, California 94025 (415) 326-6200 • Cable: SRI INTL MPK • TWX: 910-373-1246 | UNCLASSIFIED | | | |---|-----------------------------|---| | ECURITY CLASSIFICATION OF THIS PAGE (When Date El | ntered) | ···· | | REPORT DOCUMENTATION P | AGE | READ INSTRUCTIONS BEFORE COMPLETING FORM | | REPORT NUMBER 2 | GOVT ACCESSION NO. | 3. RECIPIENT'S CATALOG NUMBER | | TITLE (and Sublitie) DYNAMIC DEFORMATION AND FRACTURE (AND FILLED ELASTOMERS | OF PLAIN | 5. TYPE OF REPORT & PERIOD COVERED Final Report Sept. 1978 - Sept. 1981 6. PERFORMING ORG. REPORT NUMBER SRI Project PYU-7802 | | Y. M. Gupta and W. J. Murri | | 8. CONTRACT OR GRANT NUMBER(a) N00014-78-C-0549 | | PERFORMING ORGANIZATION NAME AND ADDRESS SRI International 333 Ravenswood Avenue Menlo Park, CA 94025 | <u></u> | 10. PROGRAM ELEMENT PROJECT, TASK
AREA & WORK UNIT NUMBERS | | Office of Naval Research | | 12. REPORT DATE
September 1981 | | Power Program Arlington, VA 22217 | | 13. NUMBER OF PAGES 10 | | 4. MONITORING AGENCY NAME & ADDRESS(If different | from Controlling Office) | 15. SECURITY CLASS (of this report) Unclassified | | | | 154. DECLASSIFICATION/DOWNGRADING SCHEDULE | | 5. DISTRIBUTION STATEMENT (of this Report) | | | | Approved for public release, dist | tribution unlimi | Lted. | | | | DTIC | | 7. DISTRIBUTION STATEMENT (of the ebetract entered in | Block 20, If different from | n Report) | 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Mechanical response, Elastomer, High strain rate, Compression, Shear, Tension, Stress waves 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) To quantify the high strain-rate mechanical response of plain Solithane, compression, shear, and tension experiments were performed under impact loading (microsecond time scales). Compression and tension measurements were carried out for filled Solithane containing 56.5 wt% of glass beads. The results show that the compression response (uniaxial strain) of plain Solithane is dominated by the mean stress-volume relation. The bulk modulus under impact loading is considerably higher than that determined from static ### SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered) Abstract (concluded) measurements in the glassy state. The filled Solithane compression response can be approximated by a simple mixture theory using the Hugoniots of plain Solithane and glass. Shear wave measurements in the plain Solithane were used to determine the shear modulus and the shear stress-strain response at several shock compressions. The shear modulus varied between 3 and 9 kbar for compressive stresses ranging between 2 and 14 kbar. With increasing compression, the dynamic shear modulus increases sharply in contrast to quasi-static measurements under pressure. The dynamic shear stress-strain curves show a decreasing modulus with increasing strain and suggest an elastic-plastic response with yield strength increasing from 0.12 to 0.25 kbar with increasing pressure for the compressive stress range investigated. This direct determination of the shear response will be very valuable for development of constitutive models because this information cannot be obtained from compression data. Tension experiments on plain and filled Solithane show elastic-brittle fracture response for both materials. However, the threshold between no damage and full spall is considerably sharper for the filled Solithane. The sharper threshold is caused by the rapid linking of closely spaced cracks nucleated at the filler-matrix interface. The tensile damage is very localized, and the location can be predicted by simple wave interactions. Two experimental methods were attempted to quantify the fracture response on the microsecond time scales and to measure the fracture damage in the recovered specimens. These measurements have given encouraging results, but more work is needed before they can be used successfully. Because of a lack of quantitative measurements in previous studies, these measurements should be pursued in future work. | Access | on For | - A | |------------------|----------|------------------| | NTIS (| 1849 | | | DTIC T | | () | | ឋ ព្រះអោច | | () | | Justif. | ication | | | | | | | By | | | | | tutlen/ | | | Avnil | al Alte | ជី១កាំខ ន | | : | Court an | Mor. | | bint | Special | 1 | | n | | | | 1 | | | | | 1 | | | L | | - | UNCLASSIFIED ### TECHNICAL SUMMARY The objectives of the work presented in this report were to directly determine the response of elastomers to compression, shear, and tension under dynamic loading conditions. These objectives have generally been met and a good start has been made in making these measurements. The main results are summarized below. The compression results in plain Solithane are dominated by the mean stress-volume response. The bulk modulus under impact conditions is considerably higher than that determined from static hydrostatic loading. The response of the filled Solithane is stiffer and to a good approximation can be predicted by a simple mixture theory using the Hugoniots of glass and plain Solithane. The longitudinal modulus measured in impact experiments is similar to ultrasonic values and is bounded by the very high frequency (10¹⁰ Hz) and quasi-static measurements. Shear wave profiles have been measured in plain Solithane at several compressions. The wave profiles are dispersive. With increasing compression, the dispersion decreases, but attenuation increases. The shear modulus values range between 3 and 9 kbar for compressive stresses ranging between 2 and 14 kbar. Unlike the quasi-static shear modulus, the dynamic data suggest a rapid increase with compression at higher stresses. High strain-rate, shear stress-strain curves have been obtained at three compression levels. The overall features are similar to quasi-static torsion measurements in glassy polymers under pressure. The stress-strain response is typical of an elastic-plastic solid with yield strength varying between 0.12 and 0.25 kbar for a volume compression ranging from 6% to 20%. The compression and shear data can be used to develop a realistic constitutive model at high strain rates. Tension recovery experiments on plain and filled Solithane show an elastic-brittle response for both materials. The damage is quite localized, and the location can be predicted from simple wave interactions. Although the recovery experiments provide a good description of the fracture damage, it is difficult to quantify these experiments. Two types of measurements to quantify tensile fracture were attempted in the present work: (1) pull-back signal measurements to characterize the tensile strength and fracture kinetics on the microsecond time scale and (2) surface area measurements on recovered specimens using the BET method. Both of these measurements have given encouraging results, but further development is needed before they can be used successfully. Future work should focus on the following topics: - Measurement of shear response above 15-kbar compression stress. - (2) Measurement of shear response for filled Solithane to determine if these measurements can be correlated with the data for plain Solithane. - (3) Attempts to quantify the tensile fracture damage. - (4) Preliminary development of a dynamic constitutive model. ### PUBLICATIONS AND PRESENTATIONS - 1. Y. M. Gupta and W. J. Murri, "Response of a Plain and Filled Elastomer (Solithane 113) to High Strain-Rate Compression, Shear, and Tension Loading," Technical Report submitted to ONR under Contract N00014-78-C-0549, SRI International, Menlo Park, CA (January 1981). - Y. M. Gupta, W. J. Murri, and D. Henley, "Large Amplitude Compression and Shear Wave Propagation in an Elastomer," paper presented at the Topical Conference on Shock Waves in Condensed Matter held at SRI International Menlo Park, CA (June 1981); Bull. Am. Phys. Soc. <u>26</u>, 657 (1981). - 3. Y. M. Gupta and W. J. Murri, "High Strain Rate Fracture of Unfilled and Filled Elastomers," Bull. Am. Phys. Soc. 26 (March 1981). - Y. M. Gupta, "High Strain-Rate Shear Response of an Elastomer" (manuscript in preparation). | No | . Copies | , No. Copies | |---|----------|---| | Dr. L.V. Schmidt Assistant Secretary of the Navy (R,E, and S) Room 5E 731 Pentagon | 1 | Dr. F. Roberto 1 Code AFRPL MKPA Edwards AFB, CA 93523 | | Washington, D.C. 20350 | | Dr. L.H. Caveny 1
Air Force Office of Scientific | | Dr. A.L. Slafkosky
Scientific Advisor
Commandant of the Marine Corps
Code RD-1
Washington, D.C. 20380 | 1 | Research Directorate of Aerospace Sciences Bolling Air Force Base Washington, D.C. 20332 | | Dr. Richard S. Miller
Office of Naval Research
Code 413
Arlington, VA 22217 | 10 | Mr. Donald L. Ball Air Force Office of Scientific Research Directorate of Chemical Sciences Bolling Air Force Base Washington, D.C. 20332 | | Mr. David Siegel
Office of Naval Research
Code 260
Arlington, VA 22217 | 1 | Dr. John S. Wilkes, Jr. 1 FJSRL/NC USAF Academy, CO 80840 | | Dr. R.J. Marcus
Office of Naval Research
Western Office
1030 East Green Street | 1 | Dr. R.L. Lou 7
Aerojet Strategic Propulsion Co.
P.O. Box 15699C
Sacramento, CA 95813 | | Pasadena, CA 91106 Dr. Larry Peebles Office of Naval Research East Central Regional Office | 1 | Dr. V.J. Keenan 1
Anal-Syn Lab Inc.
P.O. Box 547
Paoli, PA 19301 | | 666 Summer Street, Bldg. 114-D
Boston, MA 02210 | | Or. Philip Howe Army Ballistic Research Labs | | Dr. Phillip A. Miller
Office of Naval Research
San Francisco Area Office | 1 | ARRADCOM
Code DRDAR-BLT
Aberdeen Proving Ground, MD 21005 | | One Hallidie Plaza, Suite 601
San Francisco, CA 94102 | | Mr. L.A. Watermeier 1 Army Ballistic Research Labs | | Mr. Otto K. Heiney
AFATL - DLDL
Elgin AFB, FL 32542 | 1 | ARRADCOM
Code DRDAR-BLI
Aberdeen Proving Ground, MD 21005 | | Mr. R. Geisler
ATTN: MKP/MS24
AFRPL
Edwards AFB, CA 93523 | 1 | Dr. W.W. Wharton 1 Attn: DRSMI-RKL Commander U.S. Army Missile Command Redstone Arsenal, AL 35898 | | No. | Copies | No. Copies | |--|--------|---| | Dr. R.G. Rhoades
Commander
Army Missile Command
DRSMI-R
Redstone Arsenal, AL 35898 | 1 | Dr. E.H. Debutts 1 Hercules Inc. Baccus Works P.O. Box 98 Magna, UT 84044 | | Dr. W.D. Stephens
Atlantic Research Corp.
Pine Ridge Plant
7511 Wellington Rd.
Gainesville, VA 22065 | 1 | Dr. James H. Thacher 1 Hercules Inc. Magna Baccus Works P.O. Box 98 Magna, UT 84044 | | Dr. A.W. Barrows
Ballistic Research Laboratory
USA ARRADCOM
DRDAR-BLP
Aberdeen Proving Ground, MD 21005 | 1 | Mr. Theordore M. Gilliland 1 Johns Hopkins University APL Chemical Propulsion Info. Agency Johns Hopkins Road Laurel, MD 20810 | | Or. C.M. Frey
Chemical Systems Division
P.O. Box 353
Sunnyvale, CA 94086 | 1 | Dr. R. McGuire Lawrence Livermore Laboratory University of California Code L-324 Livermore, CA 94550 | | Professor F. Rodriguez
Cornell University
School of Chemical Engineering
Olin Hall, Ithaca, N.Y. 14853 | 1 | Dr. Jack Linsk 1
Lockheed Missiles & Space Co.
P.O. Box 504 | | Defense Technical Information
Center
DTIC-DDA-2
Cameron Station
Alexandria, VA 22314 | 12 | Code Org. 83-10, Bldg. 154 Sunnyvale, CA 94688 Dr. B.G. Craig 1 Los Alamos National Lab P.O. Box 1663 NSP/DOD, MS-245 Los Alamos, NM 87545 | | Dr. Rocco C. Musso Hercules Aerospace Division Hercules Incorporated Alleghany Ballistic Lab P.O. Box 210 Washington, D.C. 21502 | 1 | Dr. R.L. Rabie WX-2, MS-952 Los Alamos National Lab. P.O. Box 1663 Los Alamos NM 37545 | | Or. Ronald L. Simmons
Hercules Inc. Eglin
AFATL/DLDL
Eglin AFB, FL 32542 | 1 | Pos Alamos Scientific Lab. P.O. Box 1663 Los Alamos, NM 27545 | | | No. Copies | No. Copies | |---|------------|--| | Mr. R. Brown
Naval Air Systems Command
Code 330
Washington, D.C. 20361 | 1 | Dr. J. Schnur 1
Naval Research Lab.
Code 6510
Washington, D.C. 20375 | | Or. H. Rosenwasser
Naval Air Systems Command
AIR-310C
Washington, D.C. 20360 | 1 | Mr. R. Beauregard I
Naval Sea Systems Command
SEA 64E
Washington, D.C. 20362 | | Mr. B. Sobers
Naval Air Systems Command
Code 03P25
Washington, D.C. 20360 | 1 | Mr. G. Edwards 1
Naval Sea Systems Command
Code 62R3
Washington, D.C. 20362 | | Dr. L.R. Rothstein
Assistant Director
Naval Explosives Dev.
Engineering Dept.
Naval Weapons Station | 1 | Mr. John Boyle 1
Materials Branch
Naval Ship Engineering Center
Philadelphia, PA 19112 | | Yorktown, VA 23691 Dr. Lionel Dickinson Naval Explosive Ordnance Disposal Tech. Center | 1 | Dr. H.G. Adolph 1
Naval Surface Weapons Center
Code RII
White Oak
Silver Spring, MD 20910 | | Code D Indian Head, MD 20640 Mr. C.L. Adams Naval Ordnance Station Code PM4 | 1 | Dr. T.D. Austin 1
Naval Surface Weapons Center
Code R16
Indian Head, MD 20640 | | Indian Head, MD 20640 Mr. S. Mitchell Naval Ordnance Station Code 5253 | 1 | Dr. T. Hall 1 Code R-11 Naval Surface Heapons Center White Oak Laboratory Silver Spring, MD 20910 | | Indian Head, MD 20640 Dr. William Tolles Dean of Research Naval Postgraduate School Monterey, CA 93940 | 1 | Mr. G.L. Mackenzie 1
Naval Surface Weapons Center
Code R101
Indian Head, MD 20640 | | Naval Research Lab.
Code 6100
Washington, D.C. 20375 | 1 | Dr. K.F. Mueller l
Naval Surface Weapons Center
Code Rll
White Oak
Silver Spring, MD 20910 | | No. | Copies | No. Copies | |---|--------|--| | Mr. J. Murrin
Naval Sea Systems Command
Code 62R2
Washington, D.C. 20362 | 1 | Dr. A. Nielsen 1
Naval Weapons Center
Code 385
China Lake, CA 93555 | | Dr. D.J. Pastine
Naval Surface Weapons Cneter
Code RO4
White Oak | 1 | Dr. R. Reed, Jr. 1
Naval Weapons Center
Code 388
China Lake, CA 93555 | | Mr. L. Roslund
Naval Surface Weapons Center
Code R122 | 1 | Dr. L. Smith Naval Weapons Center Code 3205 China Lake, CA 93555 | | White Oak, Silver Spring
MD 20910
Mr. M. Stosz
Naval Surface Weapons Center | 1 | Dr. B. Douda 1
Naval Weapons Support Center
Code 5042
Crane, Indiana 47522 | | Code R121
White Oak
Silver Spring, MD 20910 | | Dr. A. Faulstich 1
Chief of Naval Technology
MAT Code 0716 | | Dr. E. Zimmet
Naval Surface Weapons Center
Code R13
White Oak
Silver Spring, MD 20910 | 1 | Washington, D.C. 20360 LCDR J. Walker 1 Chief of Naval Material Office of Naval Technology | | Dr. D. R. Derr
Naval Weapons Center
Code 388 | 1 | MAT, Code 0712 Washington, D.C. 20360 Mr. Joe McCartney 1 Naval Ocean Systems Center | | China Lake, CA 93555 | | San Diego, CA 92152 | | Mr. Lee N. Gilbert
Naval Weapons Center
Code 3205
China Lake, CA 93555 | 1 | Dr. S. Yamamoto 1
Marine Sciences Division
Naval Ocean Systems Center
San Diego, CA 91232 | | Dr. E. Martin
Naval Weapons Center
Code 3858
China Lake, CA 93555 | 1 | Dr. G. Bosmajian 1 Applied Chemistry Division Naval Ship Research & Development Center | | Mr. R. McCarten
Naval Weapons Center
Code 3272
China Lake, CA 93555 | 1 | Annapolis, MD 21401 Dr. H. Shuey 1 Rohn and Haas Company Huntsville, Alabama 35801 | | <u>Ko. (</u> | <u>lonies</u> | Ma. Carles | - | |--|---------------|--|---| | On. J.F. Kincaid
Startegic Systems Project
Office
Ospartment of the Navy | 1 | Dr. C.W. Viriasen Thickel Eleton Division P.O. Box 241 Eleton, MD 21927 | | | Posm 337
Mashimathe, D.C. 20376
Strategic Systems Project Office
Propulsion Unit | 1 | Dr. J.C. Hinshau I
Thickol Masatch Division
P.O. Bow 524
Brigham City, Utah 83192 | | | Code SM2701 Department of the Navy Mashington, D.C. 20376 Ma. E.L. Throckmenton | 1 | U.S. Army Pessarch Office Chemical & Biological Sciences Division P.O. Box 12211 | | | Strategic Systems Project Office Deportment of the Mavy Room 1048 Mashington, 0.1. 20376 | · | Research Triangle Park NC 27709 Dr. R.F. Malker | | | Sc. P.A. Flamigan
Inlocal
Fullsyille Division | 1 | USA ARRADOOM
DRDAR-LOO
Dover, NJ 07801 | | | Montswille, Alabama 35807 Mon. 9.F. Mempers Thirtyl Completation Funtswille Division Funtswille, Alabama 35807 | 1 | Dr. T. Sinden Munitions Directorate Propellants and Exclosives Defence Equipment Staff British Embassy 3100 Massachusetus Ave. Washington, D.O. 20003 | | | Mr. E.S. Skitch
Wildel Composition
Eleton Divinion
P.O. Bux 241 | 1 | LTC B. Loving 1
AFROL/LK
Edwards AFB, CA 93523 | | | Elkson, MD 21921
En. G. Thurpson
Thickel
Wasatch Division | 1 | Professor Alan N. Gent 1
Institute of Polymer Science
University of Akron
Akron, OH 44325 | | | MS 24) P.O. Box 524
Brigham Siby, UT 04302
Co. T.F. Davidson | 1 | Mr. J. M, Frankle 1
Army Ballistic Research Labs
ARRADCOM | | | Two midal birector Two midal birector Twine 1 Commanation Or varonest Europe Surova 2.0. Bu 0000 Cagon, dien 04400 | ı | Code DRDAR-BLI Aberdeen Proving Ground, MD 2100 | 5 | | No. C | opies | No. Co | pies | |--|-------|--|----------| | Dr. Ingo W. May
Army Ballistic Research Labs
ARRADCOM
Code DRDAR-BLI
Aberdeen Proving Ground, MD 21005 | 1 | Dr. J. P. Marshall
Dept. 52-35, Bldg. 204/2
Lockheed Missile & Space Co.
3251 Hanover Street
Palo Alto, CA 94304 | 1 | | Professor N.W. Tschoegl
California Institute of Tech
Dept. of Chemical Engineering
Pasadena, CA 91125 | 1 | Ms. Joan L. Janney
Los Alamos National Lab
Mail Stop 920
Los Alamos, NM 87545 | 1 | | Professor M.D. Nicol
University of California
Dept. of Chemistry | 1 | Or. J. M. Walsh
Los Alamos Scientific Lab
Los Alamos, NM 87545 | 1 | | 405 Hilgard Avenue Los Angeles, CA 90024 Professor A. G. Evans University of California | 1 | Professor R. W. Armstrong
Univ. of Maryland
Department of Mechanical Eng
College Park, MD 20742 | 1 | | Professor T. Litovitz Catholic Univ. of America Physics Department | 1 | Prof. Richard A. Reinhardt
Naval Postgraduate School
Physics & Chemistry Dept.
Monterey, CA 93940 | 1 | | 520 Michigan Ave., N.E.
Washington, D.C. 20017
Professor W. G. Knauss | 1 | Dr. R. Bernecker
Naval Surface Weapons Center
Code RI3
White Oak, Silver Spring, MD | | | Graduate Aeronautical Lab
California Institute of Tech.
Pasadena, CA 91125 | 3 | Dr. M. J. Kamlet Naval Surface Weapons Center Code R11 | 1 | | Professor Edward Price
Georgia Institute of Tech.
School of Aerospace Engin.
Atlanta, Georgia 30332 | ì | White Oak, Silver Spring, MD
Professor J. D. Achenbach
Northwestern University | 20910 | | Dr. Kenneth O. Hartman
Hercules Aerospace Division
Hercules Incorporated | 1 | Dept. of Civil Engineering
Evanston, IL 50201 | | | Plol Box 210
Cumberland, MD 21502
Dr. Thor L. Smith | 1 | Dr. N. L. Basdekas
Office of Naval Research
Mechanics Program, Code 432
Arlington, VA 22217 | 1 | | IBM Research Lab
042.232
San Jose, CA 95193 | • | Professor Kenneth Kuo
Pennsylvania State Univ.
Dept. of Mechanical Engineer
University Park, PA 16802 | l
ing | | <u>N</u> . | o. Copies | No. Copies | |---|-----------|------------| | Dr. S. Sheffield
Sandia Laboratories
Division 2513
P.O. Box 5800
Albuquerque, NM 87185 | 1 | | | Dr. M. Farber
Space Sciences, Inc.
135 Maple Avenue
Monrovia, CA 91016 | 1 | | | Dr. Y. M. Gupta
SRI International
333 Ravenswood AVenue
Menlo Park, CA 94025 | 1 | | | Mr. M. Hill
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025 | 1 | | | Professor Richard A. Schapery
Texas A&M Univ.
Dept of Civil Engineering
College Station, TX 77843 | 1 | | | Or. Stephen Swanson Univ. of Utan Dept. of Mech. & Industrial Engineering MEB 3008 Salt Lake City, UT 84112 | 1 | | | Mr. J. D. Byrd
Thiokol Corp. Huntsville
Huntsville Div.
Huntsville, AL 35807 | 1 | | | Professor G. D. Duvall
Washington State University
Dept. of Physics
Pullman, WA 99163 | 1 | | | Prof. T. Dickinson
Washington State University
Dept. of Physics
Pullman, WA 99163 | 1 | | ## END # DATE FILMED ORDER DTIC